



# A importância do DNS recursivo e seu efeito na latência do acesso à Internet

Ibirisol Fontes Ferreira

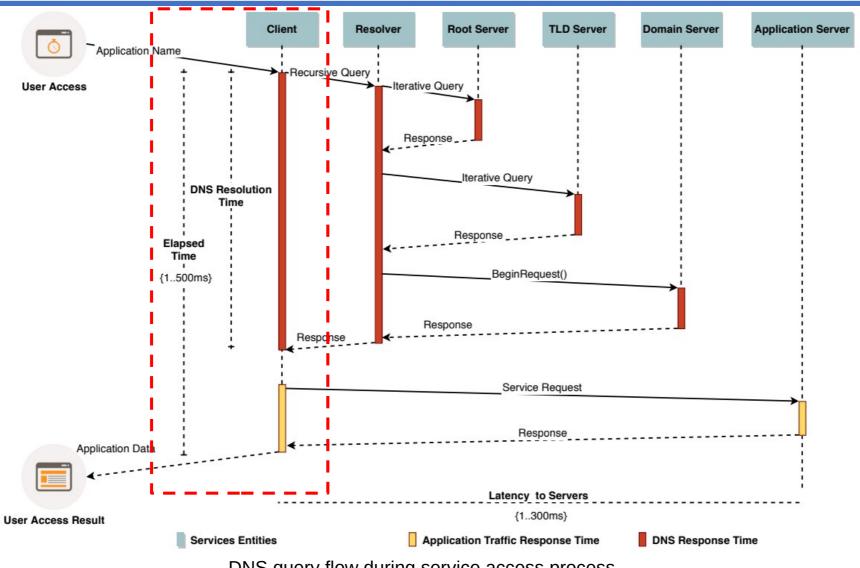
Graduate School of Informatics,

Kyoto University,

Kyoto, Japan

WTR 2024

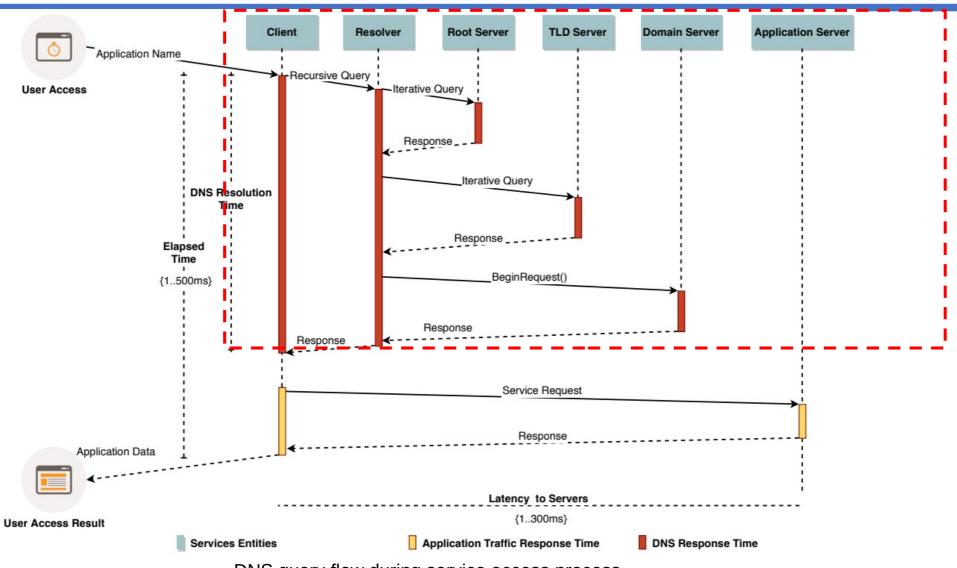
9 – 11 Setembro 2024 // Salvador, Brasil


# Motivação



- Quando um usuário da Internet tenta acessar um serviço (página da web, e-mail, mensagens instantâneas, etc.), seu sistema aciona um processo de conexão para atingir o serviço pretendido e obter o conteúdo desejado
  - A resolução de nome de etapa ocorre antes do acesso ao serviço
  - Que traduz nomes de serviço em endereços de rede usando o resolver o elemento intermediário do sistema de nomes de domínio (DNS)
- Embora a resolução DNS envolva uma parte simples do protocolo, ela pode aumentar significativamente o tempo de resposta ao serviço desejado, proporcionando assim uma Qualidade de Experiência (QoE) prejudicada

### Acesso do usuário a serviços de Internet






DNS query flow during service access process

# **Domain Name System (DNS)**





DNS query flow during service access process

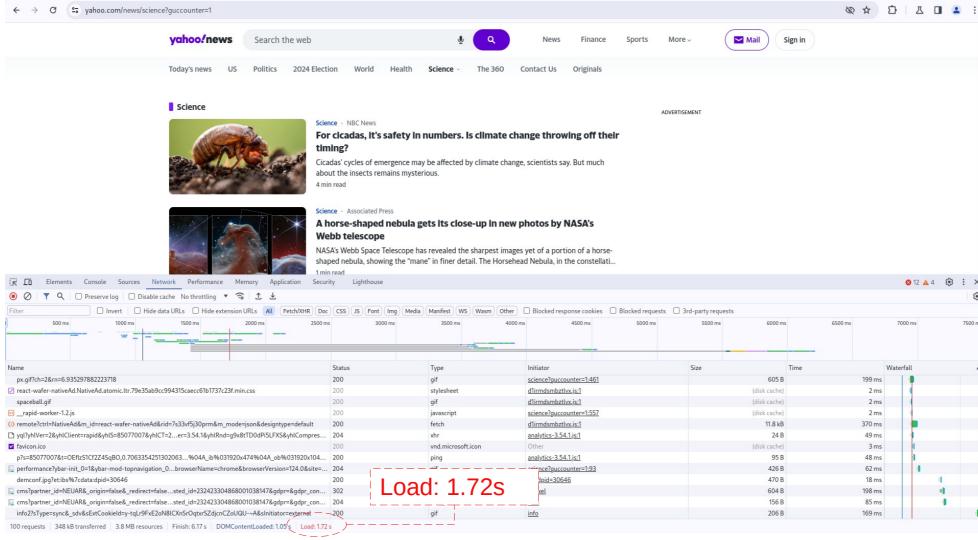
### Funcionamento e impacto do cache do DNS Resolver



- Para mitigar o tempo de resolução, o componente resolver armazena as respostas de consultas anteriores em um cache local para encurtar o processo
  - Os dados no cache são válidos apenas por um período de tempo (Time to Live -TTL) predeterminado pelo servidor autoritativo do domínio
  - Um mecanismo de consistência torna as entradas obsoletas quando o TTL expira
- Quando o DNS Resolver não tem uma resposta armazenada localmente (cache miss), ele precisa iniciar o processo de consulta do início apenas para aquela entrada perdida
  - Que precisa iniciar o processo de consulta recursiva para a entrada ausente
- Portanto, há um impacto drástico no acesso do usuário ao serviço desejado [Cohen and Kaplan, 2000], [Wills and Shang, 2000], [Jung, 2002], [Liston, 2002], [Wang, 2013].

# Efeito do cache na prática



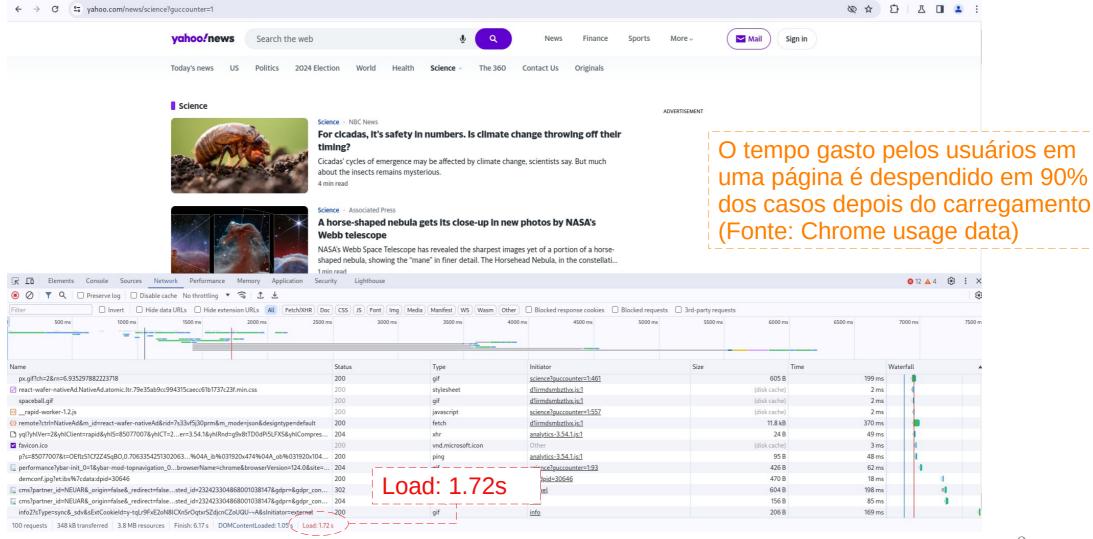

Entradas DNS não armazenadas em cache



# Efeito do cache na prática (continuação)

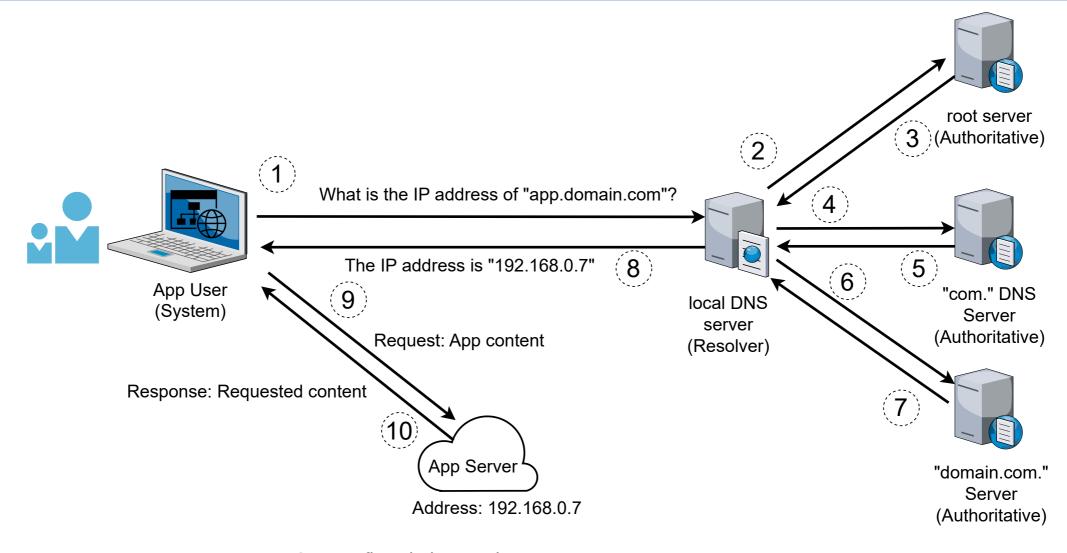


Entradas DNS armazenadas em cache




09 Sep 2024

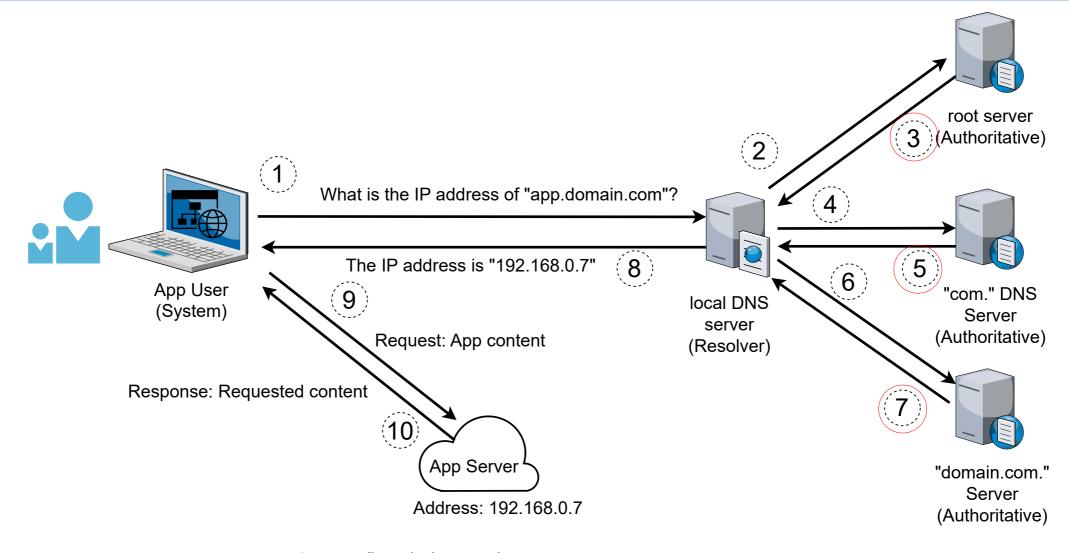
# Efeito do cache na prática (continuação)




Entradas DNS armazenadas em cache



### **Componentes DNS**



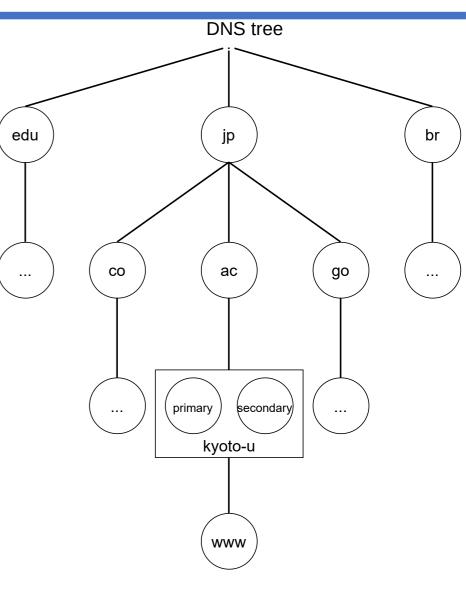



DNS query flow during service access process

### **Componentes DNS**






DNS query flow during service access process

### Papal do DNS autoritativo



- Autoritativo primário e secundário
  - Têm informações completas sobre uma parte específica do domínio, chamada de zona.
- Zona é um namespace estruturado em árvore com dados associados a seus nomes por meio de um único ou conjunto de resource records.

```
$TTL 3D
@ IN SOA ns1.my-site.com. admin.my-site.com. (
               ; serial
    10800
                 ; refresh, seconds
    1800
                 ; retry, seconds
    3600000
                 ; expire, seconds
    86400 )
                 ; minimum, seconds
                 ; Inet Address of nameserver
  NS ns1
  MX 10 mail ; Primary Mail Exchanger
                10.1.0.2
mail
                10.1.0.3
         CNAME my-site.com.
         CNAME my-site.com.
webmail.my-site.com. CNAME www
```



### Resposta DNS



 Visualizando a seção de respostas, temos as informações associadas para o mesmo resource record ou RRSet.

```
;; ANSWER SECTION:
wtr.pop-ba.rnp.br.
                            IN
                                                 4 300 20241124104142 20240826104142 52737 pop-ba.rnp.br. AZlkTy9xeUaTB/xSE2I+vMTZZMkL4lVJbGLrDNC5giB2L3Th0x2u7H/S C7eIjq3fV7t00JyjxX/bxyPt8bpm2HZxjBwhjmrmN
wtr.pop-ba.rnp.br.
+E90ZL+22zQKIKl 4cvckL/AZTKKUbA4dchcE0
                                  KYmcw30Xto28oesJxi8wPmDX/c9/joFgar IlWHEOko+oQQzPiv5p0VLzik
web3.pop-ba.rnp.br.
                     41
                            ΙN
                                          A 5 4 300 20241124104142 20240826104142 52737 pop-ba.rnp.br. bMXnTkbp4/6MjaAj15uwB5LnJitRxP3QHe2foLPBrs372VNm0g6f0aIf 10X5qtVaA7hJiNMrTczG4P0fW1UZN7RxXtgSnA940FkVI
web3.pop-ba.rnp.br
pxjAoi3aWWR aE/wzyuSlR<del>r8G23É66BB850wlPO2TB9CLGukbkPQPaQMuVx9aGJxi4Ru XSuh39MLxVu63PzWZqGqRgyZ</del>
;; ANSWER SECTION:
rnp.br.
                               IN
rnp.br.
                       169
                                              A 13 2 300 20240910035006 20240908015006 34505 rnp.br. 22YmIQK3XAVUjqfT3CXEISz7fav1mSbrIICCJQKl5TtLRfzeOAEFRW9I EtZMC6ckSfjLdwblK0UhrT2TBVjzPQ==
rnp.br.
                                    DNSSEC
;; ANSWER SECTION:
www.cnn.co.jp.
                                          IN
                                                               e57395d3fa5ee6dd1caf4489bc955d4e.cdnext.stream.ne.jp.
                                                    CNAME
e57395d3fa5ee6dd1caf4489bc955d4e.cdnext.stream.ne.jp. 254 IN CNAME cdnext-svg001-ipb001.stream.ne.jp.
cdnext-svg001-ipb001.stream.ne.jp. 25 IN A
                                                               202.79.240.142
cdnext-svg001-ipb001.stream.ne.jp. 25 IN A
                                                               202.79.240.201
```

202.247.51.200

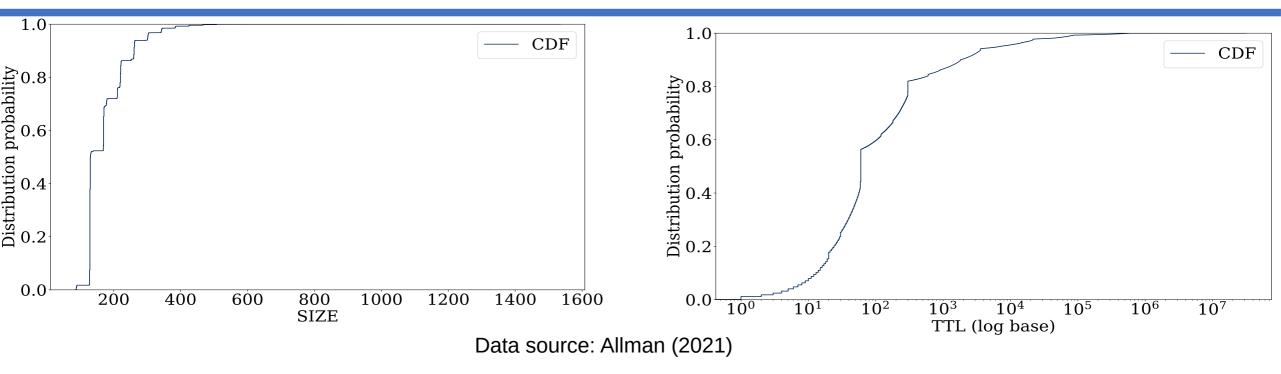
202.79.241.200

101.102.235.200

202.79.241.41

cdnext-svg001-ipb001.stream.ne.jp. 25 IN A

cdnext-svg001-ipb001.stream.ne.jp. 25 IN A


cdnext-svg001-ipb001.stream.ne.jp. 25/IN A

cdnext-svg001-ipb001.stream.ne.jp. 25 IN A

CDNs nodes

#### **DNS** data





- A maioria dos TTLs de domínios consultados com valores mais baixos
  - Responder rapidamente a uma interrupção de serviço
  - Alteração do balanceamento de carga de serviços
  - Diretrizes específicas de operação dos domínios

#### **DNS RDATA**



- A maior parte do conteúdo tem uma dependência de origem (cliente) para encaminhamento.
- EDNS (RFC 6891) permite que outros dados sejam trocados sob o datagrama
  - Extensões de Segurança DNS (DNSSEC).
  - Sub-rede do Cliente EDNS (ECS) com informações sobre localização geográfica para resolver redirecionamentos errados (RFC 7871).
    - Não é obrigatório informar precisamente, e a autoridade não pode ser usada adequadamente, o que implica uma sugestão de CDN não ótima.
    - A exposição da localização do usuário para resolvedores externos pode ser um problema.

#### **DNS RDATA**



- A maior parte do conteúdo tem uma dependência de origem (cliente) para encaminhamento.
- EDNS (RFC 6891) permite que outros dados sejam trocados sob o datagrama
  - Extensões de Segurança DNS (DNSSEC).
  - Sub-rede do Cliente EDNS (ECS) com informações sobre localização geográfica para resolver redirecionamentos errados (RFC 7871).
    - Não é obrigatório informar precisamente, e a autoridade não pode ser usada adequadamente, o que implica uma sugestão de CDN não ótima.
    - A exposição da localização do usuário para resolvedores externos pode ser um problema.

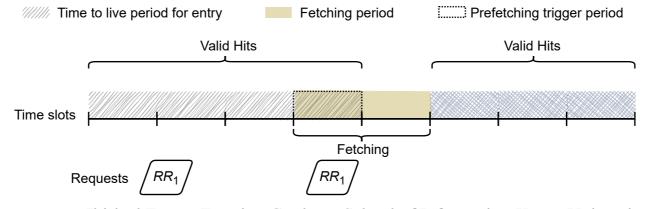
Não é mandatório que todos os resolvers, incluindo os públicos, implementem.

#### Problemas conhecidos relacionados ao DNS Resolver



- Entre os problemas de cache misses que ocorrem no resolvedor local estão:
  - Poluição do cache por entradas únicas [Yuchi, 2016], [Hao and Wang, 2017] e [Yu, 2019] que esgotam os recursos computacionais
  - Domínio com uma política TTL errada que prematuramente [Wang, 2013] ou desnecessariamente [Moura, 2019] afeta as remoções de entradas do cache
  - Problemas de segurança relacionados a ataques ao domínio inexistente
     (NXDomain) com a intenção de sobrecarregar servidores [Alayoff e Einziger, 2023]
  - A localização do resolvedor na Internet pode impactar o resultado final da perspectiva dos usuários e as entradas armazenadas no cache [Ager, 2010], [Otto, 2012], [Hours, 2015]
- O DNS Resolver local e seu cache são cruciais para o gerenciamento eficiente de recursos para reduzir o impacto na experiência do usuário usando o serviço [Zhuang, 2020]
- Aspecto regional dos resolvers são um desafio até mesmo para serviços de resolução de DNS públicos em larga escala [Google, 2021], [Cloudflare]

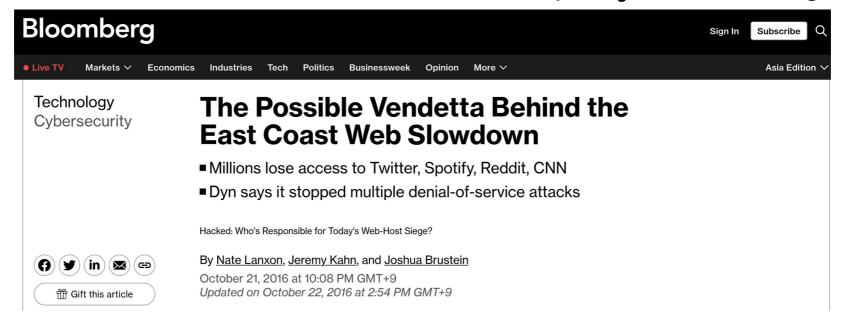
### Design dos componentes do DNS




- Gerenciamento de fila e ajuste do sistema
  - O mecanismo para controlar o atendimento de solicitações, que depende do agendamento para threads livres autônomos
  - Ajuste de nível de serviço para melhor resposta e paralelismo
- Política de cache
  - Algoritmo de domínio geral (LRU, LFU, etc.) ou específico para contexto
- Alocação e posicionamento de recursos
  - Selecionar PoPs para implantar
  - Quantidade de recursos para serviço e seu cache
- Mitigação de alta carga
  - Lidar com carga de trabalho no serviço DNS em padrões normais e anormais, geralmente quando sob ataque (ameaças de segurança)

# **Prefetching**




- Ajuda a anticipar as entradas/conteúdos/recursos que devem ser buscados e armazenados no cache com antecedência.
  - No contexto DNS, permite a renovação de recursos c/ TTL expirados
- Atualizar entradas em cache quando o TTL estiver inválido ou quase
  - Soluções ativas, que atualizam entradas após receber uma solicitação do cliente
  - Pode adotar a porcentagem de TTL de entrada como gatilho
  - Ao elevar o hit-ratio aumenta o tráfego para servidores autoritativos



#### Ofertando dados obsoletos



- O RFC 8767 permite que registros expirados sejam servidos, o que pode aumentar o cache-hit ratio e fallback quando a autoridade não estiver acessível (melhorar a resiliência)
  - É necessário definir um tempo máximo de expiração para entradas expiradas e quanto tempo esperar por resposta do upstream
  - É servido aos clientes com um valor de expiração de 30 segundos

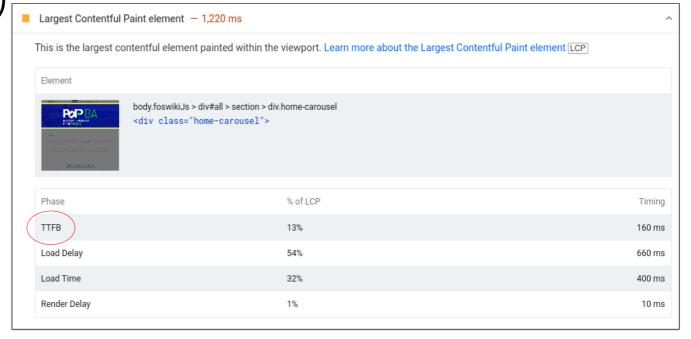


### Tuning do serviço



- TTL máximo e mínimo para manter uma entrada no cache
- EDNS Client Subnet para direcionamento performático ao host de conteúdo
- Cadeia DNSSEC NSEC para sintetizar NXDOMAIN (RFC 8198)
  - Definir um tamanho de cache negativo
- Limitar o conjunto de redes clientes permitidas e a taxa de recursão máxima
- Definir um tamanho de cache com base na demanda e na taxa de acerto
  - Também é necessário definir limites para RRSet e mensagens
- Reutilizar de portas/sockets e relacioná-las às threads
- Seleção de algoritmo de cache por carga de trabalho
  - ISP vs Resolvedor de infraestrutura
- Cache compartilhado entre um pool de resolvedores
  - Memória cache para uma mesma região de usuários podem melhorar a eficiência do cache

#### Coleta de dados




- Geralmente, os dados DNS são examinados para soluções de segurança
- Coleta de dados de uso é fundamental para o planejamento, implantação e melhoria do serviço
  - Dependência de serviços externos (CDNs, servidores autoritativos, etc.)
  - Eficácia do cache
  - Ajuste do resolver
- Analisar seus dados de serviço e integrá-los à sua operação
  - Amostragem de tráfego do servidor DNS
  - Personalização de logs (soluções de buffers de protocolo ou Syslog)
  - Exportação para ferramentas de armazenamento e visualição (Graylog, ELK, etc.)

### Avalição do acesso Web e desempenho do DNS Resolver



- Ferramentas como PageSpeed Insights (PSI), Lighthouse e WebPageTest podem ajudar a entender as metricas de desempenho do lado do cliente
  - Largest Contentful Paint (LCP)
  - Interaction to Next Paint (INP)
  - Cumulative Layout Shift (CLS)
  - First Contentful Paint (FCP)
  - First Input Delay (FID)
  - Time to First Byte (TTFB)



#### Conclusão



- A observabilidade de dados e componentes de serviço pode melhorar a implantação de serviços de rede do ISP.
- Aumentar as necessidades de soberania digital de serviços locais
  - Soluções performáticas são vitais para usuários de espera
- Informações orientadas por dados podem ajudar a promover mudanças em protocolos de rede e design de nível de sistema.
  - Estruturas e políticas do gerenciador de sistema de cache
  - Dinamismo na implantação do componentes do DNS



# Muito obrigado pela sua atenção!

#### Referências



- FERREIRA, Ibirisol Fontes; OKI, Eiji. Latency-Aware Cache Mechanism for Resolver Service of Domain Name Systems. In: NOMS 2024-2024 IEEE Network Operations and Management Symposium. IEEE, 2024. p. 1-4.
- Cohen, E. and Kaplan, H. (2000). Prefetching the means for document transfer: A new approach for reducing Web latency. Proc. IEEE INFOCOM, 2(4):854–863.
- Wills, C. E. and Shang, H. (2000). The contribution of DNS lookup costs to web object retrieval. Technical report, Citeseer.
- Jung, J., Sit, E., Balakrishnan, H., and Morris, R. (2002). DNS performance and the effectiveness of caching. IEEE/ACM Trans. Netw., 10(5):589–603.
- Liston, R., Srinivasan, S., and Zegura, E. (2002). Diversity in DNS performance measures. In Proc. 2nd ACM SIGCOMM Work. Internet Meas., page 19.
- Wang, Z. (2013). Analysis of DNS cache effects on query distribution. Sci. World J., 2013:1–8.
- YUCHI, Xuebiao; LEE, Xiaodong; PAN, Lanlan. Dealing with temporary domain name issues in the DNS. In: 2016 IEEE Symposium on Computers and Communication (ISCC). IEEE, 2016. p. 778-783.
- HAO, Shuai; WANG, Haining. Exploring domain name based features on the effectiveness of DNS caching. ACM SIGCOMM Computer Communication Review, v. 47, n. 1, p. 36-42, 2017.
- YU, Guangxi et al. Mitigating negative impacts on DNS caches caused by disposable domain names. In: 2019 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2019. p. 1-6.
- WANG, Zheng. Analysis of DNS cache effects on query distribution. The Scientific World Journal, v. 2013, n. 1, p. 938418, 2013.
- MOURA, Giovane CM et al. Cache me if you can: Effects of DNS time-to-live. In: Proceedings of the Internet Measurement Conference. 2019. p. 101-115.
- ALAYOFF, Itay; EINZIGER, Gil. Optimizing DNS Resolvers for High Loads. In: 2023 IFIP Networking Conference (IFIP Networking). IEEE, 2023. p. 1-9.
- AGER, Bernhard et al. Comparing DNS resolvers in the wild. In: Proceedings of the 10th ACM SIGCOMM conference on Internet measurement. 2010. p. 15-21.
- OTTO, John S. et al. Content delivery and the natural evolution of DNS: remote DNS trends, performance issues and alternative solutions. In: Proceedings of the 2012 Internet Measurement Conference. 2012. p. 523-536.
- HOURS, Hadrien et al. A study of the impact of DNS resolvers on performance using a causal approach. In: 2015 27th International Teletraffic Congress. IEEE, 2015. p. 10-18.
- ZHUANG, Shuying et al. Understanding the latency to visit websites in China: An infrastructure perspective. Computer Networks, v. 169, p. 107102, 2020.
- Performance Benefits | Public DNS | Google for Developers --- developers.google.com. https://developers.google.com/speed/public-dns/docs/performance, [Accessed 09-09-2024]
- How to make the Internet faster for everyone --- cloudflare.com. https://www.cloudflare.com/learning/performance/more/speed-up-the-web, [Accessed 09-09-2024]
- KUMARI, Warren; SOOD, Puneet; LAWRENCE, D. RFC 8767-Serving Stale Data to Improve DNS Resiliency. 2020.
- Mark Allman. Case Connection Zone DNS Transactions, 2021.
- Serve-stale implementation details --- kb.isc.org. https://kb.isc.org/v1/docs/serve-stale-implementation-details, [Accessed 09-09-2024]
- How DNSSEC Works --- cloudflare.com. https://www.cloudflare.com/dns/dnssec/how-dnssec-works/, [Accessed 09-09-2024]
- BOEIRA, Demétrio Francisco Freitas et al. Traffic centralization and digital sovereignty: an analysis under the lens of DNS servers. In: NOMS 2024-2024 IEEE Network Operations and Management Symposium. IEEE, 2024. p. 1-9.
- DOAN, Trinh Viet; FRIES, Justus; BAJPAI, Vaibhav. Evaluating public DNS services in the wake of increasing centralization of DNS. In: 2021 IFIP Networking Conference (IFIP Networking). IEEE, 2021. p. 1-9.